963 resultados para Bioelectrical impedance analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with anorexia nervosa (AN) have low body weight, depleted fat stores, and reduced muscle mass. Both total body potassium (TBK) and bioelectrical impedance analysis (BIA) have been used to measure the body composition of these patients.1–4 Whereas TBK accurately measures body cell mass, the metabolically active compartment of the body, whole body potassium counters are expensive and not readily available. The purpose of this study was to investigate the potential of multiple frequency BIA (MFBIA) to monitor changes in body compartments in patients with AN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton’s condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton’s K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects shortterm changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton�

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New technologies can be riddled with unforeseen sources of error, jeopardizing the validity and application of their advancement. Bioelectrical impedance analysis (BIA) is a new technology in fisheries research that is capable of estimating proximate composition, condition, and energy content in fish quickly, cheaply, and (after calibration) without the need to sacrifice fish. Before BIA can be widely accepted in fisheries science, it is necessary to identify sources of error and determine a means to minimize potential errors with this analysis. We conducted controlled laboratory experiments to identify sources of errors within BIA measurements. We concluded that electrode needle location, procedure deviations, user experience, time after death, and temperature can affect resistance and reactance measurements. Sensitivity analyses showed that errors in predictive estimates of composition can be large (>50%) when these errors are experienced. Adherence to a strict protocol can help avoid these sources of error and provide BIA estimates that are both accurate and precise in a field or laboratory setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In chronic renal failure patients under hemodialysis (HD) treatment, the availability of simple, safe, and effective tools to assess body composition enables evaluation of body composition accurately, in spite of changes in body fluids that occur in dialysis therapy, thus contributing to planning and monitoring of nutritional treatment. We evaluated the performance of bioelectrical impedance analysis (BIA) and the skinfold thickness sum (SKF) to assess fat mass (FM) in chronic renal failure patients before (BHD) and after (AHD) HD, using air displacement plethysmography (ADP) as the standard method. Design: This single-center cross-sectional trial involved comparing the FM of 60 HD patients estimated BHD and AHD by BIA (multifrequential; 29 women, 31 men) and by SKF with those estimated by the reference method, ADP. Body fat-free mass (FFM) was also obtained by subtracting the total body fat from the individual total weight. Results: Mean estimated FM (kg [%]) observed by ADP BHD was 17.95 +/- 0.99 kg (30.11% +/- 1.30%), with a 95% confidence interval (CI) of 16.00 to 19.90 (27.56 to 32.66); mean estimated FM observed AHD was 17.92 +/- 1.11 kg (30.04% +/- 1.40%), with a 95% CI of 15.74 to 20.10 (27.28 to 32.79). Neither study period showed a difference in FM and FFM (for both kg and %) estimates by the SKF method when compared with ADP; however, the BIA underestimated the FM and overestimated the FFM (for both kg and %) when compared with ADP. Conclusion: The SKF, but not the BIA, method showed results similar to ADP and can be considered adequate for FM evaluation in HD patients. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. Methods Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. Results Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. Conclusion Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.